
Digital Logic and Transistors
The invention of the transistor made binary logic the cheapest and 
most effective way to implement logic gates.

Both inputs are “on”. At least one input is “on”. The input is “off”.





What is an “Instruction”?

Let’s consider the simple operation of adding two numbers.
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Why are numbers represented in binary? How would we add 
binary numbers? 



Adding on a CPU
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Every instruction in a CPU is composed of logic gates. With current 
technology, gates are about 200 nm - roughly 300 times smaller than 
the diameter of a human hair.
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Circuits and Boolean Logic

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers 2-bit numbers
00 + 00 = 00
00 + 01 = 01
00 + 11 = 11
01 + 00 = 01

...
How many entries?

How many possible sums 
can two n-bit numbers 
have?

What does an adding circuit look like? Let’s consider adding 
in binary:

1

0
0
0

carry

input output



Circuits and Boolean Logic

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers

What does an adding circuit look like? Let’s consider adding 
in binary:
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0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers

What does an adding circuit look like? Let’s consider adding 
in binary:
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Can we calculate z and c using logic gates?
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0 + 0 = 0
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1-bit numbers

What does an adding circuit look like? Let’s consider adding 
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Can we calculate z and c using logic gates?
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0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers

What does an adding circuit look like? Let’s consider adding 
in binary:
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Can we calculate z and c using logic gates?

x  y

x  y
= (xy)  (xy)



Circuits and Boolean Logic

What does an adding circuit look like? Let’s consider adding 
in binary:

A one-bit adder needs 4 gates. How do we add numbers with 
more bits?

z = (xy)  (xy)
c = x  y

x
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z

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

01010010010

11100100011
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
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Note that computation time corresponds to circuit “depth”.


