Digital Logic and Transistors

The invention of the transistor made binary logic the cheapest and most effective way to implement logic gates.

Both inputs are "on".
At least one input is "on".

Both inputs are "on". At least one input is "on". The input is "off".

Microprocessor Transistor Counts 1971-2011 \& Moore's Law

What is an "Instruction"?

Let's consider the simple operation of adding two numbers.

$$
\text { add } \mathrm{x}, \mathrm{y}, \mathrm{z}
$$

Why are numbers represented in binary? How would we add binary numbers?

Adding on a CPU

Every instruction in a CPU is composed of logic gates. With current technology, gates are about 200 nm - roughly 300 times smaller than the diameter of a human hair.

Circuits and Boolean Logic

What does an adding circuit look like? Let's consider adding in binary:

1-bit numbers 2 -bit numbers
$0+0=00 \quad 00+00=00$
$0+1=01 \quad 00+01=01$
$1+0=01 \quad 00+11=11$
$1+1=10 \quad 01+00=01$
input output $\begin{aligned} & \text { o. } \\ & \text { carry } \\ & \text { How many entries? }\end{aligned}$
How many possible sums can two n-bit numbers have?

Circuits and Boolean Logic

What does an adding circuit look like? Let's consider adding in binary:

1-bit numbers
$0+0=00$
$0+1=01$
$1+0=01$

$1+1=10$
input
carry

Circuits and Boolean Logic

What does an adding circuit look like? Let's consider adding in binary:

1-bit numbers
$0+0=00$
$0+1=01$
$1+0=01$

$1+1=10$
input $/$ output
carry

Circuits and Boolean Logic

What does an adding circuit look like? Let's consider adding in binary:

1-bit numbers
$0+0=00$
$0+1=01$
$1+0=01$
$1+1=10$
input output
carry

Can we calculate z and c using logic gates?

Circuits and Boolean Logic

What does an adding circuit look like? Let's consider adding in binary:

1-bit numbers
$0+0=00$
$0+1=01$
$1+0=01$

| $1+1=10$ |
| :---: | :---: |
| input |
| carry |

Can we calculate z and c using logic gates?

Circuits and Boolean Logic

What does an adding circuit look like? Let's consider adding in binary:

1-bit numbers
$0+0=00$
$0+1=01$
$1+0=01$
$1+1=10$
input output
carry

Can we calculate z and c using logic gates?

Circuits and Boolean Logic

What does an adding circuit look like? Let's consider adding in binary:

$$
\begin{aligned}
& c=x \wedge y \\
& z=(x \vee y) \wedge \neg(x \wedge y)
\end{aligned}
$$

1-bit numbers

$$
\begin{aligned}
& 0+0=00 \\
& 0+1=01 \\
& 1+0=01 \\
& 1+1=10 \\
& \text { input output } \\
& \text { carry }
\end{aligned}
$$

A one-bit adder needs 4 gates. How do we add numbers with more bits?

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

> | C | 0 |
| :--- | ---: |
| x | 01010010010 |
| y | 11100100011 |
| z | |

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

$$
\begin{array}{lr}
C & 00 \\
x & 01010010010 \\
y & 11100100011 \\
\hline z & 1
\end{array}
$$

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

$$
\begin{array}{lr}
C & 100 \\
X & 01010010010 \\
y & 11100100011 \\
\hline z & 01
\end{array}
$$

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

> | C | 0100 |
| :--- | ---: |
| x | 01010010010 |
| y | 11100100011 |
| z | 101 |

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

> | C | 00100 |
| ---: | ---: |
| X | 01010010010 |
| y | 11100100011 |
| z | 0101 |

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

> | C | 000100 |
| :--- | ---: |
| X | 01010010010 |
| y | 11100100011 |
| z | 10101 |

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
C 0000100
X 01010010010
y 11100100011

Z	110101

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

> | C | 00000100 |
| :--- | ---: |
| x | 01010010010 |
| y | 11100100011 |
| z | 0110101 |

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
C 000000100
X 01010010010
y 11100100011

z	10110101

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
C 0000000100
X 01010010010
y 11100100011

z	110110101

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
C 10000000100
X 01010010010
y 11100100011
Z 0110110101

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:
C 10000000100
X 01010010010
y 11100100011
$\overline{\text { Z } 100110110101}$

x	y	$c_{\text {in }}$	$C_{\text {out }} z$	
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

Note that computation time corresponds to circuit "depth".

