
Digital Logic and Transistors
The invention of the transistor made binary logic the cheapest and
most effective way to implement logic gates.

Both inputs are “on”. At least one input is “on”. The input is “off”.

What is an “Instruction”?

Let’s consider the simple operation of adding two numbers.

Adder

add x, y, z

01010010010

11100100011

Why are numbers represented in binary? How would we add
binary numbers?

Adding on a CPU

Adder

Every instruction in a CPU is composed of logic gates. With current
technology, gates are about 200 nm - roughly 300 times smaller than
the diameter of a human hair.

x

y

z

Circuits and Boolean Logic

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers 2-bit numbers
00 + 00 = 00
00 + 01 = 01
00 + 11 = 11
01 + 00 = 01

...
How many entries?

How many possible sums
can two n-bit numbers
have?

What does an adding circuit look like? Let’s consider adding
in binary:

1

0
0
0

carry

input output

Circuits and Boolean Logic

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers

What does an adding circuit look like? Let’s consider adding
in binary:

1

carry

0
0
0

x y

0 1
1 0
1 1

0 0
Adder

c z

0 1
0 1
1 0

0 0

input output input

carry

output

Circuits and Boolean Logic

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers

What does an adding circuit look like? Let’s consider adding
in binary:

1

carry

0
0
0

x y

0 1
1 0
1 1

0 0
Adder

input output input

c z

0 1
0 1
1 0

0 0

carry

output

Circuits and Boolean Logic

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers

What does an adding circuit look like? Let’s consider adding
in binary:

1

carry

0
0
0

x y

0 1
1 0
1 1

0 0

input output input

c z

0 1
0 1
1 0

0 0

carry

output

Can we calculate z and c using logic gates?

?

c =

z =

?

Circuits and Boolean Logic

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers

What does an adding circuit look like? Let’s consider adding
in binary:

1

carry

0
0
0

x y

0 1
1 0
1 1

0 0

input output input

c z

0 1
0 1
1 0

0 0

carry

output

Can we calculate z and c using logic gates?

?

c =

z =

x  y

Circuits and Boolean Logic

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers

What does an adding circuit look like? Let’s consider adding
in binary:

1

carry

0
0
0

x y

0 1
1 0
1 1

0 0

input output input

c z

0 1
0 1
1 0

0 0

carry

output

c =

z =

Can we calculate z and c using logic gates?

x  y

x  y
= (xy)  (xy)

Circuits and Boolean Logic

What does an adding circuit look like? Let’s consider adding
in binary:

A one-bit adder needs 4 gates. How do we add numbers with
more bits?

z = (xy)  (xy)
c = x  y

x
y

c

z

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

1-bit numbers

1

carry

0
0
0

input output

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

01010010010

11100100011

0
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

1

01010010010

11100100011

00
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

01

01010010010

11100100011

100
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

101

01010010010

11100100011

0100
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

0101

01010010010

11100100011

00100
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

10101

01010010010

11100100011

000100
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

110101

01010010010

11100100011

0000100
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

0110101

01010010010

11100100011

00000100
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

10110101

01010010010

11100100011

000000100
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

110110101

01010010010

11100100011

0000000100
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

0110110101

01010010010

11100100011

10000000100
x
y
z

c

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

100110110101

01010010010

11100100011

10000000100
x
y
z

c
0
0
1
1

0
1
1
0

0
1
0
1

0
0
0
0

0
0
0
1

0
0
1
1

0
1
0
1

1
1
1
1

1
0
0
1

0
1
1
1

x y zcin cout

Adder Logic

We need to modify our 1-bit adder slightly to use it in series:

1-bit
Adder

0
0
1
1

0
1
1
0

0
1
0
1

0
0
0
0

0
0
0
1

0
0
1
1

0
1
0
1

1
1
1
1

1
0
0
1

0
1
1
1

x y zcin cout
x
y
cin

x
cout

Note that computation time corresponds to circuit “depth”.

